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This paper shows a method to determine unknown angular accelerations of
driving members of a planar mechanism with multiple degrees of freedom
via partial mechanism reduction, assuming that driving loads are known for
those driving members. Besides the partial reduction of mechanism, here we
use the analysis of primary and secondary accelerations, as well as the
principle of virtual displacements (virtual work). Using this method, a set of
decoupled equations is obtained, which is an advantage when compared to
classical methods, such as an application of generalized laws of dynamics,
which result in a set of equations that are coupled. As an illustration of how
to use the described method, an example is shown.

© 2018 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As far as the problem of multibody system
dynamics is concerned, there are several usual
methods (Gernet, 1973; Hibbeler, 2013; Johnston et
al,, 2009). The method of the reduced mechanism is
suitable for problems of planar mechanisms with
single degree of freedom (DOF), as shown in Ilic
(1968). However, the idea is to find a way to expand
the single DOF method to be applicable for multiple
DOF planar mechanisms.

1.1. Definition of a reduced mechanism

By drawing members of a single DOF planar bar
mechanism parallel to its real positions and
orientations (pose) using a scale (reduction) factor,
while member centers of rotation (poles) are placed
into a single point and connection points between
members are maintained, a reduced mechanism of
the (real) mechanism is obtained (Ilic, 1965). Fig. 1
shows a four-bar mechanism (four-joint mechanism)
along with a corresponding reduced mechanism. In
this case, the pole P* of the reduced mechanism
coincides with points A* and E* that correspond to
poles A and E of members 1 and 3 of the real
mechanism.

It is obvious that proportions between particular
members of the real mechanism and their
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corresponding members of the reduced mechanism
are generally not same.

The scaling factor of the member (j) is defined as
a ratio between the vector of j-th member of the
reduced mechanism and the vector of j-th member of
the real mechanism, which are parallel, as in Fig. 2.
(Nlic, 1968).
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where,

Qj, W; - are the initial and final point of the member
(/) of the real mechanism,

Qj, W;" - are the initial and final point of the member
(/) of the reduced mechanism.

Then, for an arbitrary point Kj; (i-th point of the
Jj-th mechanism member)

_Pi _PK;

c= =8 2
W= 5, TR, (2)
where,

Pji - vector between instantaneous pole P; of

member (j) and the point Kj; that member,
ﬁ}i - vector between pole P* of the reduced
mechanism and the point Kj; of member ()).

Factor of reduction can have any sign and it can
be zero, as well. The ratio of angular velocity of any
member and its factor of reduction remains the same
for all mechanism members (Hufnagl, 1984)

Bj _ Gjr1 _ &y 3)
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and the velocity of the point Kj; is ¥ = [@,8,] = [% ﬁ;i]_ 4)
J

Vo
P,/
Fig. 1: Mechanism with a single DOF and its unique reduced mechanism

Fig. 2: The relationship between corresponding vectors of the real mechanism members and the reduced mechanism

members
As far as the translational kinematic pair is mechanism (Fig. 3c) is constructed based on the
concerned, the slider of that pair is replaced by a virtual mechanism at the Fig. 3b (Hufnagl, 1984).
virtual (relative) member, which is perpendicular to As the slider has the angular velocity equal to the
the direction of the relative motion (sliding) over the angular velocity of the slider guide, then the factors
guide (the slider B at the Fig. 3a is replaced by virtual of their reduction are equal.

member BiBs at the Fig. 3b). Further, the reduced

P,A",D’

Fig. 3: Replacement of the translational kinematic pair (slider-guide) by a virtual member

2. Partial reduction of mechanism If we construct a corresponding integral reduced

mechanism in compliance with the aforementioned

The problem is how to define a unique reduced definition of the reduced mechanism, then the
mechanism of a real mechanism with multiple DOF. solution would not be unique, there would be
Let us assume that we have such a mechanism in the infinitely many solutions (Fig. 5).

Fig. 4.
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Fig. 4: Mechanism with two DOF

If we construct a partial reduced mechanism, by
blocking all degrees of freedom except one, then
solutions would be determined and unique. To each

*

B D B° D

P=A"=H P=A"=H

PP=A"=H

DOF of the real mechanism, there would exist one
reduced mechanism (Fig. 6).

3. Primary and secondary characteristics of the
mechanism accelerations with multiple DOF

Let us assume that a planar mechanism has s
degrees of freedom, such that the mechanism in
general case has s independent drives (Fig. 7). Then,
the angular velocity of the mechanism's j-th member
can be expressed via angular velocities of driving
members of the mechanism:

PP=A"=H

Fig. 5: Indeterminacy of the integral reduced mechanism of the real mechanism with multiple DOF

A H=P,

Po=H =B =A

Fig. 6. Determinacy of partial reduced mechanisms that correspond to a real mechanism with multiple DOF

. _, ad; ap; ; 3¢

G =k = (G b+ oo+t 5 ) K, (5)
oo ME Ty % 00

wj = ?k Zq @(pq Zq — Zq (1)] q’ (6)

where the q-th partial contribution of the angular
velocity existing within the total angular velocity is

09 ;7
wj,q ad); ¢q ’ (7)
where

k - is the unit vector perpendicular to the plane of

the mechanism,

¢4, W, - are the angle of rotation and the angular

velocity of an independent driving member q.
Angular acceleration of the j-th member of the

mechanism is

]

5o dﬁi _ (024),- 624),-
043

= = b2

Ej dt 6¢2¢1+6¢2
o 0¢; a9 7
(Gorbr + 55 b+ +326,)

3+ + 5L P2) K+

(8)
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i.e.

. > a
6jzkzq +k2q ¢]¢’q

)

6

The component of the angular acceleration, which
depends on angular velocities of driving members,
will be denoted as the primary angular acceleration
of the j-th member

j —kzqad)]d’q_zq €a’ (10)

where the q-th partial contribution of the primary
angular acceleration to the total primary angular
acceleration of the j-th member

0 _ 0%9)
2w J
]q a¢2 ¢q

(11)

and the component that depends on angular
accelerations of driving members will be named as
the secondary angular acceleration of the j-th
member
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0p; >
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where the q-th partial contribution of the secondary

angular acceleration to the total secondary angular
acceleration is

6¢>
~€ o
ja ¢q

(13)

Fig. 7. The analysis of the primary and secondary acceleration characteristics of the mechanism with multiple DOF

Velocity of the point Kj; is

By == (ar” b1 + ar” Syt ﬂ%) =

Zq ar” ¢ = 2ZqVjig (14)

where,

Biq = ok o ba- (15)
Acceleration of the point Kj; is

dji = % = i:f ¢7 i:g P2+ -+ Z:g 2 + m” ¢1

ar” ¢2 ar“ ¢S’ 16)

i.e.

dji = Xg= 166;’; P2+ X5 1;’;"%. (17)

Therefore, the acceleration of an arbitrary
mechanism's point Kj; depends, in general, on
angular velocities and angular accelerations of the
driving members of the mechanism.

The first component of the acceleration
represents the primary acceleration of the point Kj;

22
_ 9°Fji 2

2w s
Jt q 3(]5(21 q

=1 aﬁ'),q’ (18)

and the second one represents the secondary
acceleration

. a7 >
ajei q 16¢v} ¢q ajei,q- (19)
Additionally,
N 927 i
a]aL)q q 1 6(;5; ¢q’ (20)
- a7
g =52 ¢q (21)
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From (15) and (21) the following relation yields

. ¢_q (22)
From (7) and (13)

0 _ Yia _ Ea

¢,  Bg € (23)
From (3)

Djg _ Fg

Big _ P 24

Hjq Hq ( )

such that from (23) and (24)

&= Ttég =Te (25)

which results in

G _ 6

fa_ & 26

Hiq Hq (26)

Based on (22) and (4) the following is obtained

L9 Bg = |6 By s |$
= aua 52 = 32 7] 52 =[50 7a]  =

¢ [ i
[k’ th] o= [q P th] [eq’pﬂq]

€
%iq

(27)

where k is the unit vector perpendicular to the plane
of the mechanism.

4. Moment of the force with respect to the pole of
reduced mechanism

Let us assume that the q-th DOF of the planar
mechanism with multiple DOF is enabled and all
other DOF are disabled (the other variables remain
constant). Additionally, let us assume that a force fﬁ
is applied at the point Kj; of the mechanism (Fig. 8
shows only the j-th member). Then, the moment of
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the force ?]-,- for the instantaneous pole P;,
th member is

of the j-

—

Mjiq = [ﬁji.qiﬁji]- (28)
If the same force is applied at the corresponding
point Kj; of the partial reduced mechanism, which

W.

19
O

P

Ja

corresponds to the given degree of motion freedom

P
q (Fig. 8b), then the moment of the force F. with
ji

respect to the pole of the reduced mechanism Py ,

M, = [Bjig Fiil: (29)

Fig. 8: The definition of the moment of the force with respect to the pole of the reduced mechanism

— —
Vectors M*;; , and M;;, are collinear and their
relationship is

M;,q = [Briq Fiil = [j.aBjiar Fiil = walBria Fiil (30)
i.e.
ﬁ}lq ’“‘lq jia: (31)

5. Equation of the mechanism motion expressed
via the moment of the reduced mechanism

Let us assume that a planar mechanism has s
degrees of motion freedom. Additionally, let us
assume that the mechanism has the g-th degree
enabled and all other degrees are disabled. The
moment of the partial reduced mechanism
corresponding to the virtual displacement q, as a
consequence of applied external forces, is defined as
the sum of moments of all external forces associated
with and applied to the reduced mechanism, with
respect to its pole F;

* ,ext

Myt =%, % M, (32)
i.e.
M;?Zﬂ =2 2iljq flq YjMjq i M]elxl; (33)

Similar case is when inertial forces are concerned.
Let us define the moment of the partial reduced
mechanism for the virtual displacement q, yielding
from the inertial loading, as the sum of moments of
inertial forces associated with and applied to the
reduced mechanism, with respect to its pole Fj

*m _ Z] Zil‘?}?n —

) g Zi MIT (34)

20

Variation of the mechanical work done by applied
external forces on the displacement q is

BAT = 3% % (Fjetﬂ' 88jiq) = 2q2j Li (FJEIXt' Vjiq6t) =
8t 2q 2 X(Ff7", Bjig), (35)
where,

85jiq - variation of the point Kj; displacement

resulting from the displacement q,

Uj; 4 - velocity of the point Kj; resulting from the q-th
velocity, and

St - time variation.

Considering that for a set of three arbitrary
vectors the following holds

(@[b.¢]) = (b,1¢ al) (36)
then we can write
(B Biq) = (FF Tg) = (FF (@0, Bjiq)) =
(aj.q' [ﬁji,q'FﬁxtD = (aj.q'Mﬁ’i;t (37)
From (3), we obtain
@jq = Wjq :_: (38)
Based on (35), it implies
4%t = 82, X, LM, By) =
5t X XjLi (Mjelxqt Hia ) 5t Xg Xj X (”J M5, Zq>
*ext Wq\ _
= 005, %, 5 (W M:) -
* %)
ot 3 (5 22), (39)

From (39) and (32) we obtain
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SA°R = §¢ 2q< Mo, ‘;’;’) (40)
If we start from the general equation of dynamics

(Lagrange-D'alembert principle), then

SACH + A + A = 0, (41)
such that, analog to (40)
8Amw—8tz nnw @y 8Ame_8t2 Mine @q
q ! ‘lq ! q R q ! “lq '
(42)
Now, based on (40-42)
ot B (Mg ) + 0t g (M. 72) +
M: ,ine @Wq
ot Zq( ,ﬂq) = (43)
ie.
oo s (i + e + Mgr ) 2) =0 e
Since the variation of time 8t # 0, then
* t * 7N, 7] _
Y4 <(M O M + MR_Z”),#—:> =0. (45)

Expression (45) will be satisfied for any
kinematic condition of the mechanism if and only if
g

(Mot + My + M;;;"q”'f),u =0,(q=123,..,5).

6. Moment of inertia of the partial reduced
mechanism

Let us assume that any point Kj; of the j-th
member of the gq-th partial reduced mechanism has
the mass my; , which corresponds to the point Kj; of
the real mechanism with multiple DOF (Fig. 9).
Consequently, the mass of the j-th member of the
reduced mechanism will be equal to the mass of the
j-th member of the real mechanism, but the
corresponding moments of inertia, in general, will
not be equal.

The moment of inertia of j-th member of the
reduced mechanism, whose real mechanism has
multiple DOF, for its pole ijq ,is

* * 2 2
Jiq = Zimji(pji,q) =% mji(llj,qui,q) =
2
g Zimyi(Pjia)” = K q L (47)
where,
Djiq = P* K;; - the relative radius vector between

the pole P and the point Kj;,
Jjq - moment of inertia of j-th member of the real

mechanism for the pole P

The moment of inertia of the partial reduced
mechanism is defined as the moment of inertia of
that mechanism with respect to its pole P;, such that

Fig. 9: The definition of the reduced mechanism's moment of inertia

7. Angular acceleration determination of driving
members for a mechanism with multiple DOF

Let us assume that a planar mechanism with
multiple DOF performs a motion caused by a set of
applied external forces. The third member on the left
hand-side in (46) is the moment of the q-th reduced
mechanism resulting from secondary inertial forces

*me_ *me_ - pinel _
- ZJ Zl ji.q Zj Zi[p;i.q'F}‘i ] -

3Bl 8] =~ o e [ ]| 9

Since the following hold for the double cross
vector product

21

Jo=2iliq =Ll djq (48)

|a[b,¢]] = b, @) - é(a.b), (50)

then

M* ine — Z] ZL m; [ (p]p p]l) p]L (ﬁ;iﬂz_(;)]' (51)
Z€

Since pj; L€f, then (ﬁ;‘l,;—q> = 0, such that

q

M* e — Z] Zlm]l (p]itﬁ;i) - Z} Zlm]l (p]l) =

E *
_#_quZimji(pji) = _#_Z]q- (52)

Then, from (46) and (52) the following yields
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=xext | 2k Iinw
> _ Mgg +Mgg

gg = Eq = ]; l,[q, (q = 1,2,3, ...,S). (53)

From (53), the angular accelerations can be
calculated for driving members of the mechanism
with multiple DOF, using the partial reduction of the
mechanism.

8. Example

Fig. 10 shows the mechanism with two DOF.
Moment M; = 200 Nm is applied on the member 1
and the moment M, = 300 Nm is applied on the
member 4. At the start, angular velocities for
members 1 and 4 are w; = 40724/ and w, =

407ad/ . respectively.
data are given:

The following geometrical

AB = 3L,BD = DE = EH = 3L,DC3 = 2L,L = 0.1 m.

Moments of inertia of the mechanism members
are:

J1a = 0.08 kgm?, Jc3 = 0.05 kgm?, ],
= 0.2 kgm?, mass m3 = 4 kg.

The mass of the member 2 can be neglected.
Applying the method of partial reduction, determine

8.1. Solution using the classical method

The velocity of the point E, expressed using the
velocity of the point B, is (Fig. 11)
ﬁE = ﬁB + ﬁD,B + ﬁE,D' (54)

By projecting (54) onto x axis, the following is
obtained

0= —VUp + VED,

0=-3Lw; +4Lws,

w3 =2w =240 =302 (55)
Projection of (54) onto y axis is

—VE = VpB,

_4']_4(1.)4 = 4’]_4(1)2,

Wy = —Wy = —Wy = _60% . (56)

Acceleration of the point E, expressed using the
acceleration of the point B, is

Saxp

N N N N N ax;
ag+ab =ap+as +apt +dpy + s +dgp-

(57)

By projecting (57) onto x axis, the following is
obtained

’ o al = —af — agfg’ +ag%, (58)
angular accelerations of driving members. 4Lw? = —3Le; — 4Lw3 + 4Les,
B AL 42 = =36, — 4w? + 4e,,
rad rad
D 4160075 = —3€; — 43600 =5 + 4es,
2 36, + 4€3 = 20800 5. (59)
3L 1 3 P ; P
By projecting (57) onto y axis, the following is
M, 4L obtained
o
A . —af = —aj +ap% +agp (60)
¢ D —4Le, = —3Lw? + 4Le; + 4Lw3,
4L / / H —4 4_ -3 2 ! y 2 3
i\ €4 = —3wi + 4€; + 4ws,
E 4 h rad rad
4 —4ey = =3 160075 + 4¢, + 4- 900,
Fig. 10: The mechanism in the example crte, = 300r:_2d _ (61)
CHS
- 50 AV,
é‘B Vs B . ee
< < < D
d
3L 1 3
M, 4L
a)1
A ae A
Vep dgp Al H
E
Y 4 4 5 =
VE \ 4 MA ('04

Fig. 11: Determination of kinematic characteristics of the mechanism in the example

By applying the law of change of angular
momentum (Hibbeler, 2013) for the point A of the
member 1 (Fig. 12), the following is obtained

22

ZMA =0 ’
M; — Fg - 3L =J1a6,
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200 Nm — F(0,3 m) = (0,08 kgm?) ;. (62)
B F,
3L 1
€
M,
0,
A

Fig. 12: Application of the angular momentum change law
for the point A of the member 1

Since the member 2 has negligible mass, then the
force Fy is transferred from the joint B to the joint D,
as well (Fig. 13).

F, B AL Fe
<+ >
2 D
Fig. 13: The force Fy transferred along the rod 2

By applying the law of angular momentum
change for the center of mass of the member 3, the
following is obtained (Fig. 14)

FBZL + XEZL = ]3(:63'

Fg(0,2m) + X5(0,2m) = (0,05kgm?)e,

Fg(4m) + Xg(4m) = (1kgm?)e;. (63)

Fg

YE A

E

Fig. 14: Law of motion application for the beam 3

By applying the law of center of mass motion in
the x direction for the member 3, the following is
obtained

m3Xc3 = Xg — Fp,
(4kg)kcs = Xg — Fp.

Since %¢3 = 4Lw? — €32L, then

4(4Lw? — €32L) = Xg — Fp,

(16kg) Lwj — (8kg) esL = Xg — Fp,

(5760N) — (0,8kgm)e; = Xg — Fp. (64)
By applying the law of center of mass motion in

the y direction for the member 3, the following is

obtained

mz¥c3 = Yg,

yc3 = _4L€4 - ZL(J.)%,
m;(—4Le, — 2Lw3) = Y,
(4kg)(—0,4¢, — 0,2-900) = Yg,

23

—(1,6kgm)e, — 720 N = Yg. (65)

By applying the angular momentum change law
for the pole H of the member 4 (Fig. 15), the
following is obtained

YE4L + M4 = ]4].[64_,

Y;(0,4 m) + 300 Nm = (0,2 kgm?)e,,. (66)

Unknowns are: €4, €,, €3, €4, Fg, Xg, and Yz.

Xe [ [ H
! BRRT
Ye €, Wy

Fig. 15: Law of angular momentum change application for
the point H of the member 4

Jsr\

From equation (59) and (61-66), the following is
obtained

e = 12365930, €, = 2857143,
6127,4447™3 ¢, = 14,2857y, = —742,8571N, Fy =
S S

336,9085N, Xz = 11949526 N..

€3 =

8.2. Solution using partial reduction of the
mechanism

a) The first partial reduced mechanism that will
be analyzed is the case with the real mechanism
driving member 4 blocked (5¢1¢0, og, = 0). The
reduced mechanism for that case is shown in Fig. 16.
The pole of the reduced mechanism is denoted by P;.

Since in this case, based on (59): —3€; + 4€; =

20800?—2d , then the primary angular acceleration of

the member 3, which is independent of the angular
acceleration of member 1, is

ie. €9 = 520075

4€g = 208005

2

(67)

Fig. 16: Partial reduced mechanism when the member 4 is
blocked

If the factor of the reduction of member 1 is taken
U, = 1, then

PB* 3
s =" =2=07s.

: (68)

Further

7.(:'(:3 = 4L(UZ - E32L,
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K3 = 4Lwf — €921 = (4-0,13600 — 5200-2-0,1) 5 =
m
400%, (69)

The principal vector of the primary inertial forces
of the member 3, with the center of mass in the point
Cs,is
FIM = —ms%c; = —1600 N. (70)

Moment of primary inertial forces of the member
3 for its center of mass is
MIn® = J.5 €@ = (0,05 5200)Nm = 260 Nm. (71)

The moment of inertia of the member 3 for the
point E is

Jgs = Jes + m3(2L)% = (0,05 + 4 - 0,04)kgm? = 0,21 kgm?,
(72)

and the moment of inertia of the first partial reduced
mechanism, according to (48), is

Ji = 18)a1 + 13z
Ji=(1-0,08+0,75%-0,21)kgm? = 0,1981 kgm?.  (73)

In this way the angular acceleration of the
member 1 is

*,in,w inw inw

_ M7 —Mc3) +F"2Lp; _ MWaMi—psMey +F; 203

€1 = . 1= v 1)

i I
(74)
i.e.
200-0,75-260+1600-0,2-0,75 rad

1= 1=1236,7491—-. (75)

0,1981 S

b) Now, we will consider the case of the partial
reduced mechanism when the driving member 1 of
the real mechanism is blocked (5¢1 =009, # 0).

Reduced mechanism for that case is shown in Fig.
17. Pole of the reduced mechanism is denoted by P;;.

Since in this case

3

w3 = Z(.L)l = 0, (76)

then

3 = 0. (77)
Further

Yz = —4Ley — 2L},

y& = —2Lwi=—(2-0,1- 900)?2 = —1805% (78)

Ficns'w = —mz¥¢3 = 4 - (180)N = 720 N. (79)

If the reduction factor u, = 1is taken, then

24

r:in,(u
3y M*in,m _ . I\_)Iin,m _ 0
can = Man c3 =

A
,:.\/ P

o B
D ,E é \ / / [}
m ” Y A
M, @
Fig. 17. Partial reduced mechanism when the member 1 is
blocked

PiD* = uy4l = 4L = 0,4 m,

* BF 2
Jir = #iJay + maP; D™,

© = (12-0,2 + 4+ 0,4*)kgm? = 0,84 kgm?. (80)

Angular acceleration of the member 4 is

inw 5¥nx inw p¥n*
M ;j—Fc3y "P;D* _ MaM4—F3oP;D

€4 = : Us = - Has (81)
1 30011'1720 0,4 d Ji d
_ (1:300-72004 _\rad _ ra
€y = (70'84 1)58 = 14,2857, (82)

Therefore, the solutions using the proposed
method and the classical method are same.

9. Conclusion

In contrary to the application of the general laws
of multibody system dynamics, where as the result of
solution to an inverse problem of dynamics, a set of
coupled equations is obtained, by applying the
partial reduction of mechanism, solutions are
obtained in a simpler way. Specifically, in this
example there were seven coupled equations
obtained using the classical method, but only two
decoupled equations with one wunknown per
equation using the proposed method of partial
reduced mechanism. Comparing the obtained results
using different methods the differences are
negligible and they exist only due to the round off
errors.
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